

Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis

Kelvin F. Conrad^{a,*}, Martin S. Warren^b, Richard Fox^b, Mark S. Parsons^a, Ian P. Woiwod^a

^aRothamsted Research, Plant and Invertebrate Ecology, West Common, Harpenden, Hertfordshire AL5 2JQ, UK ^bButterfly Conservation, Manor Yard, East Lulworth, Wareham, Dorset BH20 5QP, UK

ARTICLE INFO

Article history: Received 23 November 2005 Received in revised form 31 March 2006 Accepted 14 April 2006 Available online 30 June 2006

Keywords: Biodiversity Population trends Population dynamics Abundance Occupancy Lepidoptera

ABSTRACT

A fundamental problem in estimating biodiversity loss is that very little quantitative data are available for insects, which comprise more than two-thirds of terrestrial species. We present national population trends for a species-rich and ecologically diverse insect group: widespread and common macro-moths in Britain. Two-thirds of the 337 species studied have declined over the 35 yr study and 21% (71) of the species declined >30% 10 yr⁻¹. If IUCN (World Conservation Union) criteria are applied at the national scale, these 71 species would be regarded as threatened. The declines are at least as great as those recently reported for British butterflies and exceed those of British birds and vascular plants. These results have important and worrying implications for species such as insectivorous birds and bats, and suggests as-yet undetected declines may be widespread among temperate-zone insects.

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Insects are a vital component of terrestrial ecosystems and form a substantial proportion of terrestrial biodiversity. Despite this, knowledge of endangered insects lags behind that of vertebrates and vascular plants (New, 2004; Thomas et al., 2004). Whether recent extinction rates of insects are as great as for other groups has been debated keenly (Thomas and Morris, 1994; Lawton and May, 1995; McKinney, 1999). Most early estimates of insect extinction rates were much lower than those of birds, large mammals and plants, but attempts to quantify losses amongst insects were hampered by a lack of suitable data (Thomas and Morris, 1994; McKinney, 1999; New, 2004; Thomas et al., 2004).

Recently, Thomas et al. (2004) compared similarly measured changes in native butterfly, bird, and plant species and concluded that butterflies had declined more rapidly than these other groups in Britain; the first time such a comparison has been achieved for an insect taxon at the national scale. They proposed that if other insect groups are similarly sensitive to recent environmental change, then the unmeasured or under-recorded extinction rates of insects may rival or exceed those documented for vertebrates and plants (McKinney, 1999; Thomas et al., 2004). Furthermore, Thomas et al. (2004) argued that such high rates of extinction for insects would signal the 'sixth great extinction' (Wilson, 1992).

Here, we report severe national population declines among another intensively recorded insect group: the larger British moths, or 'macro-moths'. Thomas (2005) noted that long time series of species abundance should provide sensitive indicators of environmental change and cited the British marco-moths as one of three long-term datasets suitable for this purpose. In a previous paper (Conrad et al., 2004) we have described and validated our methodology for

^{*} Corresponding author: Tel.: +44 1582 763133; fax: +44 1582 760981.

E-mail addresses: kelvin.conrad@bbsrc.ac.uk, conradkf@hotmail.com (K.F. Conrad). 0006-3207/\$ - see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.biocon.2006.04.020

estimating long-term population trends for British macromoths and outlined some general patterns in the trends based on ecological characteristics of the moth species. In this paper we apply IUCN (IUCN World Conservation Union, 2001) criteria to identify nationally threatened species and compare macro-moth species declines to those reported for UK butterflies (Thomas and Clarke, 2004; Thomas, 2005). While the utility of butterflies as indicators of insect biodiversity has been questioned (Hambler and Speight, 2004; but see Thomas and Clarke, 2004; Thomas, 2005), moths form a much more ecologically diverse and speciesrich group and are thus more likely to represent a greater range of terrestrial insects in Britain. We suggest, therefore, that declines in common and widespread moths provide further evidence of wider declines in British terrestrial insects.

2. Methods

2.1. Data source and selection criteria

Population data on British macro-moths were extracted from the Rothamsted Insect Survey (RIS, Woiwod and Harrington, 1994), one of the longest-running and spatially extensive datasets of a species-rich insect group anywhere in the world (Conrad et al., 2004). Established in the early 1960s to provide information on the spatial variation of insect abundance, the RIS has operated a national network of approximately 100 standard light-traps (Williams, 1948) annually since 1968. These traps provide standardized, nightly counts of individual moth species from a wide range of habitats (Woiwod and Harrington, 1994; Conrad et al., 2004). Catches are small, but consistent and representative, making the traps suitable for long-term monitoring of common and widespread species without affecting the moth populations being sampled (Williams, 1952; Taylor and French, 1974; Conrad et al., 2004). We analysed data for 337 species, each of which was represented by more than 500 individuals captured over the 35-yr sampling period (1968-2002), and derived annual national indices of abundance from the 199 sites that operated for a minimum of 48 weeks a year for 5 yr (Conrad et al., 2004).

2.2. Estimates of abundance and population change

We estimated indices of annual abundance, allowing for differences between sites, by fitting a generalised linear model with Poisson errors and logarithmic link, using version 3.2 of the TRIM (TRends and Indices for Monitoring data) software package (Pannekoek and Van Strien, 2001). By convention, the estimated abundance in the first year is set to one and each annual index, A_i , for year *i*, is calculated relative to the first, A_1 . T, the 'TRIM trend index' is the overall slope of the regression of annual indices on a logarithmic scale (Pannekoek and Van Strien, 2001). T is a reliable and robust estimator of long-term trends that is suitable for comparisons across a range of species (Van Strien et al., 2001; Conrad et al., 2004). Annual rates of population change were calculated from T and 10-yr percentage declines were estimated from the annual rates of change (Van Strien et al., 2001).

We considered species population decline rates >30% $10 \ yr^{-1}$ to be of significant conservation concern. We further

divided these rapidly declining species into two categories: vulnerable (30-50% 10 yr⁻¹) and endangered (>50% 10 yr⁻¹), according to the criteria and time period used to identify globally Vulnerable and Endangered species (IUCN World Conservation Union, 2001). Following the guidelines of Gardenfors et al. (2001), we applied the IUCN thresholds unaltered at the national level because the British populations can be regarded as effectively isolated, insular populations and their extinction risk is unlikely to be affected by populations in continental Europe (i.e., there is unlikely to be any significant 'rescue effect').

2.3. Regional variation

In order to assess geographical variation in population trends for common macro-moths we divided Great Britain into two regions along the 4500 N gridline of the British national grid system. The region to the north of 4500 N was called 'North' (N), and the region to the south of 4500 N was called 'South' (S). This division into regions was arbitrary but gave a reasonable number and distribution of sites for analysis in each region. More importantly, it provides the first steps in examining a number of species trends for the influences of climate change and changes in land-use already demonstrated to affect the decline of the once-common moth, Arctia caja (Conrad et al., 2002, 2003).

2.4. Comparison of short-term and long-term trap data

While the core number and geographical distribution of traps never changes significantly from year to year, there has been turnover of trapping sites during the 35 yr of our study (Conrad et al., 2004). In order to examine the effect of this turnover on our population trend estimates we calculated 10-yr percentage population changes using only traps that operated for 15 or more years and compared the results with those from our standard 'all sites' analysis, which used trapping sites that had operated for five or more years.

2.5. Light competition

'Astronomical light pollution' results from the cumulative effects of artificial lighting sources increasing the illumination of the night-time sky (Longcore and Rich, 2004) and may compete with light-traps and decrease their effectiveness. An increase in astronomical light pollution during our study period could thus decrease trap catches and lead to overestimates of downward population trends.

To examine the effects of 'light competition' on our trap catches, we obtained 'world change pair' images of the night-time sky from the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) dataset, provided by the US The National Oceanic and Atmospheric Administration's (NOAA) National Geophysical Data Centre (NGDC) (http://dmsp.ngdc.noaa.gov/html/download_world_ change_pair.html). These images provide estimates of average annual night-time illumination of the earth's surface for the years 1992/93 and 2000. Illumination is recorded as pixels on a linear scale from 0 (dark) to 63 (instrument light saturation) (Elvidge et al., 2001). We selected the 116 RIS light-traps running between 1992 and 2000, and extracted the night-time illumination of the $\sim 1 \text{ km}^2$ pixel containing each trap in 1992/ 93 and 2000. We divided the traps into two groups: 'dark', which included 35 trapping sites which scored 0 in 1992/93 and remained 0, or scored >0 in 1992/93 but were darker in 2000, and 'light' which comprised 81 sites that were >0 in 1992/93 and were lighter in 2000 (no sites initially >0 remained unchanged). We then estimated, for each of the two groups, the annual rate of change in total trap catch of the 337 moth species in this study for the period 1992–2000.

3. Results

3.1. Rates of change of moth abundance and regional variation

We found alarming declines in the overall abundance of widespread marco-moths. The annual total number of all macromoths caught by the RIS light-trap network decreased by 31% over the 35-yr sampling period (Fig. 1). The majority of this decrease occurred in southern Britain, while the north showed no significant trend over time (Fig. 1). Year-to-year fluctuations in abundance are very similar in both the north and south despite the difference in overall trends (Fig. 1).

Two-thirds (0.66 \pm 0.05, proportion \pm 95% CI) of the 337 individual moth species declined (Fig. 2). The median 10-yr population change was a decrease of 12% with a greater median decrease in the south (17%) than in the north (5%; Fig. 2). Of even greater concern, 21% (N = 71) of species displayed declines placing them in the vulnerable or endangered categories (Fig. 2). The total catch of each species and the trend index, T, were not correlated (r = 0.020, N = 337, P = 0.714; Fig. 3), so the total number of individuals captured did not affect whether a species was likely to increase or decline. Overall, 75% of species in the south declined compared to 55% in the north (Fig. 2).

3.2. Land-use categories represented

Although the light-trap network originated from an agricultural research station (Woiwod and Harrington, 1994), it was not intended to monitor agricultural pest species and a wide range of land-use categories have been sampled (Fig. 4). Because of trap turnover, the relative numbers of different types of biotope sampled each year varies over time (Fig. 4). The mean annual proportions of sites used corresponded with the following categories: coastal (8.9%); farmland (13.5%); mixed (15.3%); moorland (3.1%); parkland (22.8%); scrubland (2.6%); urban (15.9%) and woodland (17.8%). Only the proportion of scrubland changed significantly over time ($F_{1,33} = 30.34$, P < 0.001), and this is largely because no traps were sited in areas that were categorised as scrubland in the early years of the study. Annual variation in biotopes sampled was not systematically biased in any way.

3.3. Comparison of short-term and long-term trap data

Estimates for 222 decreasing species were obtained from sites that ran 15 or more years. These estimates were highly correlated with those from the 'all sites' analysis (r = 0.95, N = 222, P = <0.001), suggesting that light-trap turnover did not bias the results. Using only long-term trap sites to calculate trends had little impact on assigning species to the vulnerable and endangered categories (Fig. 5). A similar result was obtained when sites running 20 or more years were used (Conrad et al., 2004). Therefore, the all-sites analysis was used because it provides greater spatial coverage, larger sample sizes for individual species and enables estimates for a greater number of less common species.

3.4. Light competition

Contrary to expectation, the annual index of total trap catch (slope \pm SE) at 'dark' sites (-0.044 ± 0.007) decreased marginally more than at 'light' sites (-0.035 ± 0.005) although the difference between these slopes was not significant ($t_{38} = 0.97$, P = 0.34). The decrease in total macro-moths captured was therefore as great or greater at sites that remained dark or became darker than at those where night-time illumination increased between 1992 and 2000. In addition, annual estimates

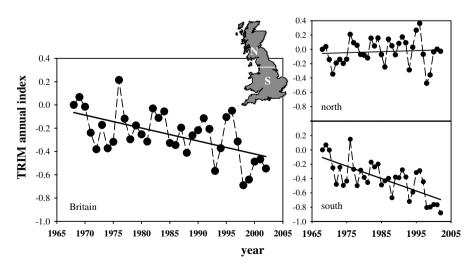


Fig. 1 – Decreases in total annual trap catches for all species. The decrease for Great Britain is significant (t_{33} = 8.83, P < 0.001), as is the decrease in the south (t_{33} = 10.9, P < 0.001), and represent 31% and 44% decreases in total macro-moths caught, respectively. Trap catches have increased by 5% in the north, but this trend is not significant (t_{33} = 0.67, P = 0.51).

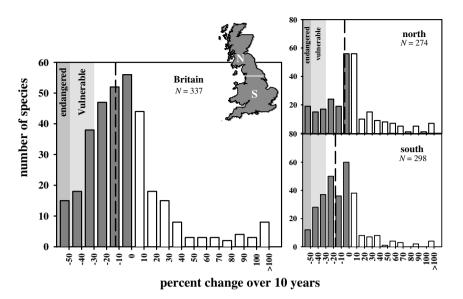


Fig. 2 – Frequency distributions of changes in abundance of British macro-moths. The figures plotted are the percentage changes over a 10-yr period, calculated from the annual rate of change estimated from long-term trends from 1968–2002. The vertical dashed line shows the median 10-yr change. X-axis labels are the upper limits of each class. Shaded areas correspond with the criteria thresholds for threatened species in the vulnerable and endangered categories.

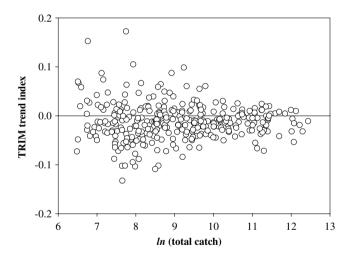


Fig. 3 – TRIM trend index versus the natural logarithm of total trap catch for each of the 337 species in the study. Frequently captured species are no more or less likely to decline or increase than less common species.

of abundance were very similar between groups. This indicates that the declines in moth abundance observed over the course of our study are not caused by decreased effectiveness of RIS light-traps due to increasing light competition, but does not preclude the possibility that light pollution has been a cause of moth population declines (Frank, 1988).

4. Discussion

This study has, for the first time, shown that the so-called "common and widespread" macro-moth species in Britain are undergoing severe population declines. These estimates of population change represent a wide variety of biotopes, are robust to trap turnover, are not affected by light competition and are independent of total catches for individual species.

The overall pattern of decline for so many species points to a widespread deterioration of suitable environmental conditions across the country. The deterioration has been most severe in the south of England where the rapid intensification of agriculture and forestry already has been implicated in the decline of butterflies, especially in the southeast (Warren et al., 2001). However, the fact that a large proportion of species are declining rapidly in both north and south Britain (Fig. 2) indicates that adverse environmental changes are impacting moth populations across the country.

The IUCN categories of threat are widely used to prepare 'Red lists' of threatened species and have become an important tool to identify ecological problems and guide conservation action (Mace and Lande, 1991; IUCN World Conservation Union, 2001; Dunn, 2002). While the quantitative data on population dynamics demanded by IUCN categories are lacking for almost all moths and other insects that are currently of conservation concern around the world (New, 2004), the extensive RIS dataset did allow us to determine, quantitatively, 10-yr rates of population change of a large group of British macro-moths. Following the criteria of the IUCN categories in our study provides a well-recognized scale of the severity of moth population declines.

In this study we found 71 common moth species that are declining at rates that should see them designated as endangered or vulnerable if the quantitative IUCN criteria are applied at the national scale (Gardenfors et al., 2001; Eaton et al., 2005). None of the threatened species is known for long-distance migrations and it is unlikely that the declining populations can be "rescued" by continental migrants.

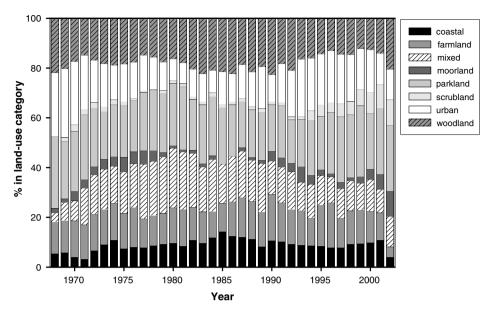


Fig. 4 - Annual proportions of land-use categories for light-traps used in the study.

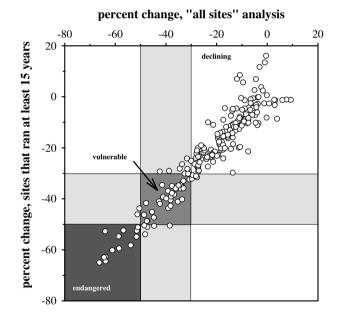


Fig. 5 – Comparison of 10-yr trends estimated by analysis of all light-trap sites and only using sites that operated for at least 15 yr. The four areas shaded pale grey delineate regions of assignment of rapid-decline categories between the two methods of estimating trends.

Even so, it is more important that the magnitude of the declines are sufficient that the species *could* be considered for threatened status. The number of potentially threatened species in this study is more than double the published British Red Data Book list of 33 species (Shirt, 1987), none of which was included in our analysis. This finding suggests we may be seriously underestimating the proportion of threatened British insects.

Designation of threatened status for common and widespread species on the basis of population decline rates alone has been criticized (Dunn, 2002) and the method of applying IUCN criteria at national rather than global scales is still being formalised, although their utility has been recognised (Gardenfors et al., 2001; Dunn, 2002; Eaton et al., 2005). Nevertheless, it is important that monitoring effort is directed toward understanding population changes among common species as well as rare ones (Conrad et al., 2002; Dunn, 2002). Common species may undergo dramatic population changes that go largely unnoticed by recorders and conservation managers, but which could provide valuable information for conservation and ecological studies (Thomas and Abery, 1995; Cowley et al., 1999; Leon-Cortes et al., 1999). Common species should represent a greater variety of habitats and species interactions and therefore play an important role in ecosystem functioning.

A brief examination of moth population trends in relation to ecological and life-history traits identified few significant associations and declines are taking place in a wide variety of biotopes (Conrad et al., 2004). While widely distributed species are more likely to be declining, increasing species are likely to be those that are expanding their range as well as increasing in abundance, and are often species apparently benefiting from human activity, such as those feeding on ornamental conifers (Conrad et al., 2004). The causes of longterm trends identified in this study are yet to be assessed in detail, and are likely to be a complex mixture of factors influencing the quantity, quality and spatial distribution of suitable habitat (e.g., land management, chemical and light pollution, climatic conditions). Causes of decline will also undoubtedly vary from species to species.

All of the moth species in our study are common and widespread. Truly specialised species, such as have been described for British butterflies (Warren et al., 2001) are too uncommon and too locally distributed (Quinn et al., 1997) to have been caught in sufficient numbers to be used in our analysis and are therefore under-represented. If, like specialist butterflies (Warren et al., 2001), these species are more

likely to be declining, then we have underestimated the overall proportions of declining macro-moths.

Half of the species we studied experienced a 10-yr decline of at least 12%, and while the precise comparison of trends between different sampling methods is difficult and may give misleading results (Thomas, 1996) our results suggest that British macro-moths have undergone declines at least as severe as British butterflies (Thomas et al., 2004). Moreover, the percentage of moth species declining (66%) was similar to the proportion of butterflies declining (71%), and greater than the proportion of birds (54%) or plants declining (28%) (Thomas et al., 2004; Eaton et al., 2005). Thus, our findings support the view that insect biodiversity is declining very rapidly in Britain and probably at a greater rate than vertebrates and vascular plants (Thomas et al., 2004), with potentially serious consequences for ecosystem services.

Common macro-moths have undergone widespread and serious declines in Britain. Environmental changes that affect common and widespread herbivores, such as the macromoths reported here, signal strong impacts on the wider ecosystem and at higher trophic levels such as predacious insects, insectivorous spiders, birds and bats (Pollard and Yates, 1993; Ormerod and Watkinson, 2000; Donald et al., 2001; Wickramasinghe et al., 2004). Compared to UK butterflies (Thomas et al., 2004), the macro-moths in this study include a greater number of species from a wider range of habitats and, therefore are more likely to be representative of terrestrial insect biodiversity. However, the observed declines of macro-moths, taken together with those of butterfly species, signal a biodiversity crisis for Britain and are a strong indicator that insects may be facing great losses in other temperatezone industrialised countries. As yet, even correlative evidence of factors driving long-term moth population trends is lacking, but having identified so many decreasing trends, the next priority is to examine the relative roles of climate, chemical and light pollution, and changes in land-use in greater detail.

Acknowledgements

We wish to acknowledge the efforts of the numerous volunteers who help run and maintain the light-traps of the Rothamsted Insect Survey. Joe Perry, Suzanne Clark and Peter Rothery offered statistical advice and discussion. Arco van Strien provided excellent advice and support for TRIM. Marie Castellazzi extracted the UK light-change data from world maps kindly provided by Chris Elvidge from the US National Geophysical Data Centre. Georgina Mace and Erica Dunn advised on the use of IUCN criteria. This study was funded by the Esmée Fairbairn Foundation and the UK Biotechnology and Biological Sciences Research Council (BBSRC), from which Rothamsted Research receives grantaided support.

Appendix A. List of species studied with rates of annual population change

Number = "Bradley number", from Checklist of Lepidoptera recorded from the British Isles (Bradley, 2000); annual change rate = annual rate of population change estimated from the 35-yr time series (see methods); 95% CI = 95% confidence interval for the annual change rate; change status: increasing = change rate >0, declining = change rate <0, vulnerable = greater than $30\% \cdot 10 \text{ yr}^{-1}$ decline, endangered = greater than $50\% 10 \text{ yr}^{-1}$ decline.

Number	Vernacular name	Species	Annual change rate	95% CI	Change status
14	Ghost Swift	Hepialus humuli	-0.036	-0.027, -0.046	Vulnerable
15	Orange Swift	Hepialus sylvina	0.023	0.031, 0.015	Increasing
17	Common Swift	Hepialus lupulinus	-0.005	0.003, -0.013	Declining
18	Map-Winged Swift	Hepialus fusconebulosa	-0.014	-0.007, -0.022	Declining
1631	December Moth	Poecilocampa populi	-0.030	-0.025, -0.034	Declining
1632	Pale Eggar	Trichiura crataegi	-0.054	-0.042, -0.065	Vulnerable
1634	The Lackey	Malacosoma nuestria	-0.063	-0.044, -0.082	Vulnerable
1640	The Drinker	Euthrix potatoria	-0.007	0.000, -0.015	Declining
1645	Scalloped Hook-Tip	Falcaria lacertinaria	-0.021	-0.013, -0.028	Declining
1646	Oak Hook-Tip	Drepana binaria	-0.047	-0.033, -0.061	Vulnerable
1648	Pebble Hook-Tip	Drepana falcataria	-0.020	-0.012, -0.027	Declining
1651	Chinese Character	Cilix glaucata	-0.018	-0.011, -0.024	Declining
1652	Peach Blossom	Thyatira batis	-0.028	-0.020, -0.036	Declining
1653	Buff Arches	Habrosyne pyritoides	-0.034	-0.026, -0.043	Declining
1657	Common Lutestring	Ochropacha duplaris	0.031	0.044, 0.018	Increasing
1658	Oak Lutestring	Cymatophorima diluta	-0.048	-0.023, -0.072	Vulnerable
1659	Yellow-Horned	Achlya flavicornis	0.015	0.022, 0.008	Increasing
1663	March Moth	Alsophila aescularia	-0.013	-0.008, -0.019	Declining
1665	Grass Emerald	Pseudoterpna pruinata	-0.030	-0.016, -0.044	Declining
1666	Large Emerald	Geometra papilionaria	0.009	0.016, 0.002	Increasing
1667	Blotched Emerald	Comibaena bajularia	-0.008	0.013, -0.029	Declining
1669	Common Emerald	Hemithea aestivaria	-0.008	-0.002, -0.014	Declining

Number	Vernacular name	Species	Annual change rate	95% CI	Change status
1673	Small Emerald	Hemistola chrysoprasaria	-0.049	-0.023, -0.074	Vulnerable
1674	Little Emerald	Jodis lactearia	-0.002	0.007, -0.010	Declining
1677	Birch Mocha	Cyclophora albipunctata	-0.020	-0.002, -0.038	Declining
1680	Maiden's Blush	Cyclophora punctaria	0.028	0.046, 0.011	Increasing
1682	Blood-Vein	Timandra griseata	-0.043	-0.037, -0.049	Vulnerable
1689	Mullein Wave	Scopula marginepunctata	-0.040	-0.021, -0.059	Vulnerable
1690	Small Blood-Vein	Scopula imitaria	-0.028	-0.021, -0.035	Declining
1692	Lesser Cream Wave	Scopula immutata	-0.003	0.023, -0.029	Declining
1693	Cream Wave	Scopula floslactata	-0.009	-0.003, -0.015	Declining
1694	Smoky Wave	Scopula ternata	-0.006	0.017, -0.030	Declining
1699	Least Carpet	Idaea vulpinaria	0.188	0.248, 0.128	Increasing
1702	Small Fan-Footed Wave	Idaea biselata	-0.006	-0.001, -0.011	Declining
1705	Dwarf Cream Wave	Idaea fuscovenosa	0.048	0.062, 0.034	Increasing
1707	Small Dusty Wave	Idaea seriata	0.013	0.022, 0.003	Increasing
1708	Single-Dotted Wave	Idaea dimidiata	0.013	0.019, 0.007	Increasing
1709	Satin Wave	Idaea subsericeata	-0.012	-0.001, -0.023	Declining
1711	Treble Brown-Spot	Idaea trigeminata	0.104	0.117, 0.090	Increasing
1712	Small Scallop	Idaea emarginata	-0.009	-0.001, -0.017	Declining
1713	Riband Wave	Idaea aversata	0.005	0.009, 0.001	Increasing
1715	Plain Wave	Idaea straminata	0.043	0.079, 0.008	Increasing
1716	The Vestal	Rhodometra sacraria	0.060	0.120, 0.000	Increasing
1719	Oblique Carpet	Orthonama vittata	-0.050	-0.034, -0.065	Vulnerable
1722	Flame Carpet	Xanthorhoe designata	0.018	0.026, 0.010	Increasing
1723	Red Carpet	Xanthorhoe munitata	-0.046	-0.035, -0.057	Vulnerable
1724	Red Twin-Spot Carpet	Xanthorhoe spadicearia	-0.016	-0.010, -0.022	Declining
1725	Dark-Barred Twin-Spot	Xanthorhoe ferrugata	-0.069	-0.062, -0.076	Endangered
1726	Large Twin-Spot Carpet	Xanthorhoe quadrifasiata	-0.010	0.001, -0.021	Declining
1727	Silver-Ground Carpet	Xanthorhoe montanata	-0.015	-0.010, -0.020	Declining
1728	Garden Carpet	Xanthorhoe fluctuata	-0.033	-0.028, -0.038	Declining
1732	Shaded Broad-Bar	Scotopteryx chenopodiata	-0.037	-0.029, -0.045	Vulnerable
1738	Common Carpet	Epirrhoe alternata	-0.004	0.002, -0.010	Declining
1739	Wood Carpet	Epirrhoe rivata	0.001	0.017, -0.014	Increasing
1740	Galium Carpet	Epirrhoe galiata	-0.040	-0.019, -0.062	Vulnerable
1742	Yellow Shell	Camptogramma bilineata	0.019	0.029, 0.009	Increasing
1744	Grey Mountain Carpet	Entephria caesiata	-0.044	-0.024, -0.064	Vulnerable
1745	The Mallow	Larentia clavaria	-0.009	0.001, -0.020	Declining
1745	Shoulder Stripe	Anticlea badiata	-0.032	-0.026, -0.038	Declining
1740	The Streamer	Anticlea derivata	-0.019	-0.012, -0.026	Declining
1748	Beautiful Carpet	Mesoleuca albicillata	0.004	0.024, -0.016	Increasing
1748	Dark Spinach	Pelurga comitata	-0.085	-0.061, -0.108	Endangered
1749	Water Carpet	Lampropteryx suffumata	0.005	0.012, -0.002	Increasing
1750	Devon Carpet	Lampropteryx sujjumata	0.069		Increasing
	-			0.118, 0.020	-
1752	Purple Bar Striped Twin-Spot Carpet	Cosmorhoe ocellata	-0.007	-0.001, -0.012	Declining
1753	• • •	Nebula salicata	-0.010	0.010, -0.030	Declining
1754	The Phoenix	Eulithis prunata	0.012	0.026, -0.002	Increasing
1755	The Chevron	Eulithis testata	-0.015	-0.007, -0.022	Declining
1756	Northern Spinach	Eulithis populata	0.019	0.023, 0.015	Increasing Endopgorod
1757	The Spinach	Eulithis mellinata	-0.084	-0.060, -0.108	Endangered
1758	Barred Straw	Eulithis pyraliata	-0.020	-0.014, -0.026	Declining
1759	Small Phoenix	Ecliptopera silaceata	-0.042	-0.035, -0.049	Vulnerable
1760	Red–green Carpet	Chloroclysta siterata	0.057	0.067, 0.047	Increasing
1761	Autumn Green Carpet	Chloroclysta miata	-0.014	-0.005, -0.023	Declining
1762	Dark Marbled Carpet	Chloroclysta citrata	0.012	0.019, 0.005	Increasing
1764	Common Marbled Carpet	Chloroclysta truncata Cidaria fulvata	-0.019	-0.014, -0.024	Declining
1765	Barred Yellow		-0.010	-0.003, -0.018	Declining

Appendix A – continued

(continued on next page)

Number	Vernacular name	Species	Annual change rate	95% CI	Change status
1766	Blue-Bordered Carpet	Plemyria rubiginata	0.049	0.065, 0.032	Increasing
1767	Pine Carpet	Thera firmata	0.038	0.051, 0.025	Increasing
1768	Grey Pine Carpet	Thera obeliscata	0.005	0.011, -0.002	Increasing
1769	Spruce Carpet	Thera britannica	0.067	0.090, 0.044	Increasing
1771	Juniper Carpet	Thera juniperata	0.077	0.120, 0.034	Increasing
1773	Broken-Barred Carpet	Electrophaes corylata	-0.007	0.004, -0.018	Declining
1775	Mottled Grey	Colostygia multistrigaria	-0.026	-0.019, -0.034	Declining
1776	Green Carpet	Colostygia pectinataria	0.026	0.033, 0.018	Increasing
1777	July Highflyer	Hydriomena furcata	0.012	0.018, 0.006	Increasing
1778	May Highflyer	Hydriomena impluviata	-0.005	0.010, -0.020	Declining
1781	Small Waved Umber	Horisme vitalbata	0.014	0.033, -0.005	Increasing
1782	The Fern	Horisme tersata	-0.015	0.003, -0.032	Declining
1784	Pretty Chalk Carpet	Melanthia procellata	-0.056	-0.038, -0.074	Vulnerable
1789	Scallop Shell	Rheumaptera undulata	-0.017	-0.002, -0.031	Declining
1792	Dark Umber	Philereme transversata	-0.034	-0.021, -0.048	Declining
1794	Sharp-Angled Carpet	Euphyia unangulata	-0.031	-0.019, -0.042	Declining
1795	November Moth	Epirrita dilutata	-0.031	-0.027, -0.036	Declining
1797	Autumnal Moth	Epirrita autumnata	-0.011	-0.001, -0.020	Declining
1798	Small Autumnal Moth	Epirrita filigrammaria	-0.022	0.040, -0.084	Declining
1799	Winter Moth	Operophtera brumata	-0.004	0.003, -0.012	Declining
1800	Northern Winter Moth	Operophtera fagata	-0.011	-0.001, -0.020	Declining
1802	The Rivulet	Perizoma affinitata	-0.015	-0.006, -0.024	Declining
1803	Small Rivulet	Perizoma alchemillata	-0.003	0.009, -0.014	Declining
1807	Grass Rivulet	Perizoma albulata	-0.090	-0.067, -0.113	Endangered
1808	Sandy Carpet	Perizoma flavofasciata	-0.005	0.003, -0.013	Declining
1809	Twin-Spot Carpet	Perizoma didymata	0.028	0.036, 0.019	Increasing
1858	V-Pug	Chloroclystis v-ata	0.009	0.022, -0.004	Increasing
1864	The Streak	Chesias legatella	-0.042	-0.033, -0.051	Vulnerable
1865	Broom-Tip	Chesias rufata	-0.052	-0.022, -0.081	Vulnerable
1867	Treble-Bar	Aplocera plagiata	-0.032	-0.021, -0.044	Declining
1873	Welsh Wave	Venusia cambrica	0.005	0.021, -0.010	Increasing
1874	Dingy Shell	Euchoeca nebulata	0.020	0.065, -0.026	Increasing
1875	Small White Wave	Asthena albulata	0.001	0.030, -0.028	Increasing
1881	Early Tooth-Striped	Trichopteryx carpinata	0.032	0.041, 0.022	Increasing
1882	Small Seraphim	Pterapherapteryx sexalata	-0.033	-0.015, -0.051	Declining
1883	Yellow-Barred Brindle	Acasis viretata	0.023	0.036, 0.011	Increasing
1884	The Magpie	Abraxas grossulariata	-0.033	-0.025, -0.040	Declining
1887	Clouded Border	Lomaspilis marginata	-0.004	0.001, -0.010	Declining
1888	Scorched Carpet	Ligdia adustata	-0.020	-0.011, -0.029	Declining
1889	Peacock	Semiothisa notata	0.091	0.132, 0.050	Increasing
1890	Sharp-Angled Peacock	Semiothisa alternaria	-0.013	0.001, -0.027	Declining
1893	Tawny-Barred Angle	Semiothisa liturata	0.002	0.012, -0.008	Increasing
1894	Latticed Heath	Semiothisa clathrata	-0.058	-0.048, -0.067	Vulnerable
1897	The V-Moth	Semiothisa wauaria	-0.097	-0.072, -0.122	Endangered
1902	Brown Silver-Lines	Petrophora chlorosata	-0.005	0.000, -0.009	Declining
1903	Barred Umber	Plagodis pulveraria	0.021	0.031, 0.011	Increasing
1904	Scorched Wing	Plagodis dolabraria	0.002	0.010, -0.005	Increasing
1906	Brimstone Moth	Opisthograptis luteolata	-0.013	-0.009, -0.017	Declining
1907	Bordered Beauty	Epione repandaria	-0.008	0.000, -0.016	Declining
1910	Lilac Beauty	Apeira syringaria	-0.031	-0.023, -0.040	Declining
1910	August Thorn	Ennomos quercinaria	-0.031 -0.047	-0.023, -0.040 -0.033, -0.061	Vulnerable
1912	Canary-Shouldered Thorn	Ennomos alniaria	-0.030	-0.033, -0.031 -0.024, -0.036	Declining
1913 1914	Dusky Thorn	Ennomos fuscantaria	-0.103	-0.024, -0.038 -0.088, -0.119	Endangered
	September Thorn	Ennomos Juscantaria Ennomos erosaria			Endangered
1915 1017	-		-0.068	-0.056, -0.080	
1917	Early Thorn	Selenia dentaria	-0.026	-0.022, -0.030	Declining
1918	Lunar Thorn	Selenia lunularia	-0.015	-0.005, -0.026	Declining

Appendix A – continued

Number	Vernacular name	Species	Annual change rate	95% CI	Change status
1919	Purple Thorn	Selenia tetralunaria	-0.032	-0.024, -0.041	Declining
1920	Scalloped Hazel	Odontopera bidentata	-0.004	0.001, -0.009	Declining
1921	Scalloped Oak	Crocallis elinguaria	-0.031	-0.026, -0.035	Declining
1922	Swallow-Tail Moth	Ourapteryx sambucaria	-0.024	-0.018, -0.031	Declining
1923	Feathered Thorn	Colotois pennaria	-0.024	-0.019, -0.029	Declining
1926	Pale Brindled Beauty	Apocheima pilosaria	-0.022	-0.012, -0.032	Declining
1927	Brindled Beauty	Lycia hirtaria	-0.046	-0.038, -0.055	Vulnerable
1930	Oak Beauty	Biston strataria	-0.003	0.004, -0.011	Declining
1931	Peppered Moth	Biston betularia	-0.027	-0.018, -0.035	Declining
1932	Spring Usher	Agriopis leucophaearia	0.010	0.034, -0.015	Increasing
1933	Scarce Umber	Agriopis aurantiaria	-0.028	-0.018, -0.039	Declining
1934	Dotted Border	Agriopis marginaria	-0.022	-0.017, -0.027	Declining
1935	Mottled Umber	Erannis defoliaria	0.000	0.012, -0.012	Increasing
1937	Willow Beauty	Peribatodes rhomboidaria	-0.015	-0.009, -0.022	Declining
1940	Satin Beauty	Deileptenia ribeata	0.111	0.153, 0.069	Increasing
1941	Mottled Beauty	Alcis repandata	0.010	0.015, 0.005	Increasing
1942	Dotted Carpet	Alcis jubata	0.062	0.077, 0.048	Increasing
1944	Pale Oak Beauty	Serraca punctinalis	0.007	0.022, -0.009	Increasing
1945	Brussels Lace	Cleorodes lichenaria	-0.011	0.011, -0.034	Declining
1947	The Engrailed	Ectropis bistortata	0.003	0.009, -0.003	Increasing
1950	Brindled White-Spot	Paradarisa extersaria	-0.008	0.014, -0.029	Declining
1951	Grey Birch	Aethalura punctulata	0.000	0.019, -0.020	Declining
1954	Bordered White	Bupalus piniaria	-0.011	0.004, -0.027	Declining
1955	Common White Wave	Cabera pusaria	0.016	0.021, 0.011	Increasing
1956	Common Wave	Cabera exanthemata	0.006	0.011, 0.000	Increasing
1957	White-Pinion Spotted	Lomographa bimaculata	0.010	0.031, -0.011	Increasing
1958	Clouded Silver	Lomographa temerata	-0.018	-0.012, -0.025	Declining
1961	Light Emerald	Campaea margaritata	0.007	0.011, 0.002	Increasing
1962	Barred Red	Hylaea fasciaria	0.003	0.010, -0.005	Increasing
1981	Poplar Hawk-Moth	Laothoe populi	-0.007	-0.001, -0.012	Declining
1994	Buff-Tip	Phalera bucephala	-0.022	-0.012, -0.031	Declining
2000	Iron Prominent	Notodonta dromedarius	-0.012	0.001, -0.025	Declining
2003	Pebble Prominent	Eligmodonta ziczac	-0.021	-0.011, -0.031	Declining
2005	Great Prominent	Peridea anceps	0.016	0.028, 0.003	Increasing
2006	Lesser Swallow Prominent	Pheosia gnoma	-0.019	-0.013, -0.026	Declining
2007	Swallow Prominent	Pheosia tremula	0.012	0.027, -0.003	Increasing
2008	Coxcomb Prominent	Ptilodon capucina	-0.025	-0.019, -0.030	Declining
2011	Pale Prominent	Pterostoma palpina	-0.009	-0.002, -0.017	Declining
2014	Marbled Brown	Drymonia dodonaea	-0.011	0.000, -0.023	Declining
2015	Lunar Marbled Brown	Drymonia ruficornis	0.022	0.039, 0.006	Increasing
2020	Figure of Eight	Diloba caeruleocephala	-0.081	-0.071, -0.090	Endangered
2028	Pale Tussock	Calliteara pudibunda	-0.015	-0.005, -0.024	Declining
2030	Yellow-Tail	Euproctis similis	-0.006	0.000, -0.013	Declining
2033	Black Arches	Lymantria monacha	0.020	0.036, 0.005	Increasing
2035	Round-Winged Muslin	Thumatha senex	0.013	0.039, -0.014	Increasing
2037	Rosy Footman	Miltochrista miniata	0.040	0.054, 0.026	Increasing
2038	Muslin Footman	Nudaria mundana	0.022	0.034, 0.010	Increasing
2040	Four-Dotted Footman	Cybosia mesomella	0.004	0.014, -0.005	Increasing
2044	Dingy Footman	Eilema griseola	0.063	0.076, 0.049	Increasing
2047	Scarce Footman	Eilema complana	0.091	0.112, 0.070	Increasing
2049	Buff Footman	Eilema deplana	0.065	0.104, 0.027	Increasing
2050	Common Footman	Eilema lurideola	0.010	0.016, 0.004	Increasing
2057	Garden Tiger	Arctia caja	-0.062	-0.054, -0.071	Vulnerable
2059	Clouded Buff	Diacrisia sannio	-0.028	-0.007, -0.050	Declining
		0 11 1 1 1 1 1	0.011		1 1 2

Spilosoma lubricipeda

Appendix A – continued

2060

White Ermine

(continued on next page)

Vulnerable

-0.035, -0.046

-0.041

Number	Vernacular name	Species	Annual change rate	95% CI	Change status
2061	Buff Ermine	Spilosoma luteum	-0.037	-0.031, -0.042	Vulnerable
2063	Muslin Moth	Diaphora mendica	0.007	0.015, -0.001	Increasing
2064	Ruby Tiger	Phragmatobia fuliginosa	0.007	0.015, -0.001	Increasing
2069	Cinnabar	Tyria jacobaeae	-0.049	-0.035, -0.063	Vulnerable
2077	Short-Cloaked Moth	Nola cucullatella	-0.021	-0.011, -0.030	Declining
2078	Least Black Arches	Nola confusalis	0.061	0.082, 0.040	Increasing
2081	White-Line Dart	Euxoa tritici	-0.069	-0.051, -0.088	Endangered
2082	Garden Dart	Euxoa nigricans	-0.097	-0.067, -0.126	Endangered
2085	Archer's Dart	Agrotis vestigialis	-0.031	-0.016, -0.046	Declining
2087	Turnip Moth	Agrotis segetum	-0.032	-0.022, -0.042	Declining
2088	Heart & Club	Agrotis clavis	-0.002	0.012, -0.016	Declining
2089	Heart & Dart	Agrotis exclamationis	-0.031	-0.023, -0.040	Declining
2091	Dark Sword-Grass	Agrotis ipsilon	-0.025	-0.003, -0.047	Declining
2092	Shuttle-Shaped Dart	Agrotis puta	0.009	0.019, -0.001	Increasing
2098	The Flame	Axylia putris	-0.021	-0.014, -0.029	Declining
2102	Flame Shoulder	Ochropleura plecta	-0.001	0.005, -0.007	Declining
2107	Large Yellow Underwing	Noctua pronuba	0.025	0.030, 0.019	Increasing
2109	Lesser Yellow Underwing	Noctua comes	0.017	0.024, 0.011	Increasing
2110	Broad-Bordered Yellow Underwing	Noctua fimbriata	0.070	0.094, 0.046	Increasing
2111	Lesser Broad-Bordered Yellow Underwing	Noctua janthe	0.008	0.015, 0.002	Increasing
2114	Double Dart	Graphiphora augur	-0.097	-0.084, -0.110	Endangered
2117	Autumnal Rustic	Paradiarsa glareosa	-0.070	-0.060, -0.079	Endangered
2118	True Lover's Knot	Lycophotia porphyrea	-0.029	-0.023, -0.036	Declining
2120	Ingrailed Clay	Diarsia mendica	-0.031	-0.026, -0.036	Declining
2121	Barred Chestnut	Diarsia dahlii	0.033	0.045, 0.021	Increasing
2122	Purple Clay	Diarsia brunnea	-0.018	-0.012, -0.025	Declining
2123	Small Square-Spot	Diarsia rubi	-0.052	-0.045, -0.060	Vulnerable
2126	Setaceous Hebrew Character	Xestia c-nigrum	0.004	0.010, -0.003	Increasing
2127	Triple-Spotted Clay	Xestia ditrapezium	-0.020	0.002, -0.041	Declining
2128	Double Square-Spot	Xestia triangulum	-0.014	-0.008, -0.019	Declining
2130	Dotted Clay	Xestia baja	-0.014	-0.007, -0.021	Declining
2132	Neglected or Grey Rustic	Xestia castanea	-0.047	-0.029, -0.065	Vulnerable
2133	Six-Striped Rustic	Xestia sexstrigata	-0.021	-0.012, -0.029	Declining
2134	Square-Spot Rustic	Xestia xanthographa	0.005	0.011, -0.001	Increasing
2135	Heath Rustic	Xestia agathina	-0.052	-0.029, -0.074	Vulnerable
2136	The Gothic	Naenia typica	-0.032	-0.012, -0.051	Declining
2138	Green Arches	Anaplectoides prasina	0.019	0.031, 0.007	Increasing
2139	Red Chestnut	Cerastis rubricosa	-0.021	-0.014, -0.029	Declining
2145	The Nutmeg	Discestra trifolii	-0.017	0.001, -0.035	Declining
2147	The Shears	Hada plebeja	0.010	0.020, 0.001	Increasing
2150	Grey Arches	Polia nebulosa	-0.015	-0.001, -0.029	Declining
2154	Cabbage Moth	Mamestra brassicae	-0.015	-0.006, -0.025	Declining
2155	Dot Moth	Melanchra persicariae	-0.059	-0.044, -0.073	Vulnerable
2158	Pale-Shouldered Brocade	Lacanobia thalassina	0.003	0.011, -0.005	Increasing
2160	Bright-Line Brown-Eye	Lacanobia oleracea	-0.011	-0.004, -0.018	Declining
2163	Broom Moth	Ceramica pisi	-0.041	-0.032, -0.049	Vulnerable
2173	The Lychnis	Hadena bicruris	-0.024	-0.010, -0.037	Declining
2176	Antler Moth	Cerapteryx graminis	-0.031	-0.024, -0.038	Declining
2177	Hedge Rustic	Tholera cespitis	-0.098	-0.087, -0.110	Endangered
2178	Feathered Gothic	Tholera decimalis	-0.065	-0.052, -0.077	Vulnerable
2179	Pine Beauty	Panolis flammea	0.044	0.057, 0.032	Increasing
2182	Small Quaker	Orthosia cruda	0.008	0.021, -0.004	Increasing
2186	Powdered Quaker	Orthosia gracilis	-0.040	-0.030, -0.050	Vulnerable
2187	Common Quaker	Orthosia cerasi	0.006	0.013, -0.002	Increasing
2188	Clouded Drab	Orthosia incerta	-0.008	-0.002, -0.014	Declining
2100	Twin Spotted Ouskor	Orthogia munda	0.001	0.000 0.011	Doclining

Orthosia munda

-0.001

0.009, -0.011 Declining

Appendix A – continued

2189

Twin-Spotted Quaker

Number	Vernacular name	Species	Annual change rate	95% CI	Change status
2190	Hebrew Character	Orthosia gothica	-0.011	-0.006, -0.015	Declining
2192	Brown-Line Bright-Eye	Mythimna conigera	-0.023	-0.012, -0.035	Declining
2193	The Clay	Mythimna ferrago	-0.009	-0.004, -0.015	Declining
2198	Smoky Wainscot	Mythimna impura	0.000	0.006, -0.006	Declining
2199	Common Wainscot	Mythimna pallens	-0.029	-0.021, -0.036	Declining
2205	Shoulder-Striped Wainscot	Mythimna comma	-0.036	-0.024, -0.048	Vulnerable
2225	Minor Shoulder-Knot	Brachylomia viminalis	-0.037	-0.025, -0.048	Vulnerable
2227	The Sprawler	Brachionycha sphinx	-0.049	-0.040, -0.057	Vulnerable
2229	Brindled Ochre	Dasypolia templi	-0.063	-0.040, -0.085	Vulnerable
2231	Deep-Brown Dart ^a	Aporophyla lutulenta	-0.064	-0.044, -0.084	Vulnerable
2232	Black Rustic	Aporophyla nigra	-0.032	-0.019, -0.044	Declining
2237	Grey Shoulder-Knot	Lithophane ornitopus	0.072	0.101, 0.044	Increasing
2240	Blair's Shoulder-Knot	Lithophane leautieri	0.165	0.243, 0.087	Increasing
2241	Red Sword-Grass	Xylena vetusta	-0.013	0.002, -0.028	Declining
2243	Early Grey	Xylocampa areola	0.004	0.013, -0.005	Increasing
2245	Green-Brindled Crescent	Allophyes oxyacanthae	-0.044	-0.038, -0.050	Vulnerable
2247	Merveille Du Jour	Dichonia aprilina	0.005	0.020, -0.009	Increasing
2248	Brindled Green	Dryobotodes eremita	0.040	0.058, 0.023	Increasing
2250	Dark Brocade	Mniotype adusta	-0.043	-0.027, -0.058	Vulnerable
2254	Grey Chi	Antitype chi	-0.023	-0.005, -0.041	Declining
2255	Feathered Ranunculus	Eumichtis lichenea	-0.007	0.003, -0.018	Declining
2256	The Satellite	Eupsilia transversa	0.024	0.035, 0.014	Increasing
2258	The Chestnut	Conistra vaccinii	0.012	0.017, 0.007	Increasing
2259	Dark Chestnut	Conistra ligula	-0.019	-0.009, -0.029	Declining
2262	The Brick	Agrochola circellaris	-0.028	-0.021, -0.035	Declining
2263	Red-Line Quaker	Agrochola lota	0.007	0.016, -0.001	Increasing
2264	Yellow-Line Quaker	Agrochola macilenta	0.014	0.020, 0.007	Increasing
2265	Flounced Chestnut	Agrochola helvola	-0.058	-0.043, -0.072	Vulnerable
2266	Brown-Spot Pinion	Agrochola litura	-0.039	-0.031, -0.048	Vulnerable
2267	Beaded Chestnut	Agrochola lychnidis	-0.064	-0.057, -0.072	Vulnerable
2269	Centre-Barred Sallow	Atethmia centrago	-0.038	-0.029, -0.046	Vulnerable
2270	Lunar Underwing	Omphaloscelis lunosa	0.020	0.027, 0.013	Increasing
2272	Barred Sallow	Xanthia aurago	-0.017	-0.005, -0.029	Declining
2273	Pink-Barred Sallow	Xanthia togata	-0.018	-0.012, -0.025	Declining
2274	The Sallow	Xanthia icteritia	-0.048	-0.040, -0.056	Vulnerable
2275	Dusky-Lemon Sallow	Xanthia gilvago	-0.070	-0.036, -0.104	Endangered
2284	Grey Dagger	Acronicta psi	-0.041	-0.028, -0.054	Vulnerable
2289	Knot Grass	Acronicta rumicis	-0.041	-0.028, -0.054 -0.035, -0.054	Vulnerable
2293	Marbled Beauty	Cryphia domestica	0.051	0.062, 0.039	Increasing
2299	Mouse Moth	Amphipyra tragopogonis	-0.037	-0.030, -0.044	Vulnerable
2299	Brown Rustic	Rusina ferruginea	-0.037		Declining
2302			-0.013	-0.010, -0.019	-
	Straw Underwing Small Angle Shades	Thalpophila matura		-0.022, -0.040	Declining
2305	0	Euplexia lucipara	-0.019	-0.011, -0.027	Declining
2306	Angle Shades	Phlogophora meticulosa	0.011	0.018, 0.004	Increasing
2312	The Olive	Ipimorpha subtusa	0.031	0.061, 0.001	Increasing
2318	The Dun-Bar	Cosmia trapezina	0.000	0.007, -0.008	Declining
2319	Lunar-Spotted Pinion	Cosmia pyralina	-0.026	-0.010, -0.042	Declining
2321	Dark Arches	Apamea monoglypha	-0.009	-0.004, -0.014	Declining
2322	Light Arches	Apamea lithoxylaea	-0.035	-0.026, -0.043	Declining
2326	Clouded-Bordered Brindle	Apamea crenata	-0.003	0.007, -0.014	Declining
2330	Dusky Brocade	Apamea remissa	-0.039	-0.028, -0.051	Vulnerable
2333	Large Nutmeg	Apamea anceps	-0.058	-0.034, -0.081	Vulnerable
2334	Rustic Shoulder-Knot	Apamea sordens	-0.027	-0.018, -0.036	Declining
2335	Slender Brindle	Apamea solopacina	0.016	0.038, -0.006	Increasing
2240	Middle Derred Miner	Oligia faggiumaula	0.012	0.000 0.010	Declining

Oligia fasciuncula

-0.013

Appendix A - continued

2340

Middle-Barred Minor

(continued on next page)

Declining

-0.006, -0.019

Number	Vernacular name	Species	Annual change rate	95% CI	Change status
2341	Cloaked Minor	Mesoligia furuncula	0.022	0.032, 0.012	Increasing
2342	Rosy Minor	Mesoligia literosa	-0.047	-0.035, -0.058	Vulnerable
2343	Common Rustic	Mesapamea secalis	0.004	0.009, -0.002	Increasing
2345	Small Dotted Buff	Photedes minima	-0.020	-0.015, -0.025	Declining
2350	Small Wainscot	Photedes pygmina	-0.024	-0.016, -0.031	Declining
2352	Dusky Sallow	Eremobia ochroleuca	0.009	0.022, -0.004	Increasing
2353	Flounced Rustic	Luperina testacea	-0.019	-0.013, -0.024	Declining
2357	Large Ear	Amphipoea lucens	-0.019	0.006, -0.044	Declining
2360	Ear Moth	Amphipoea oculea	-0.035	-0.019, -0.051	Vulnerable
2361	Rosy Rustic	Hydraecia micacea	-0.054	-0.047, -0.060	Vulnerable
2364	Frosted Orange	Gortyna flavago	-0.012	-0.002, -0.022	Declining
2367	Haworth's Minor	Celaena haworthii	-0.062	-0.045, -0.079	Vulnerable
2368	The Crescent	Celaena leucostigma	-0.048	-0.030, -0.066	Vulnerable
2375	Large Wainscot	Rhizedra lutosa	-0.054	-0.042, -0.066	Vulnerable
2380	Treble Lines	Charanyca trigrammica	0.007	0.019, -0.004	Increasing
2381	The Uncertain	Hoplodrina alsines	0.002	0.009, -0.005	Increasing
2382	The Rustic	Hoplodrina blanda	-0.039	-0.030, -0.048	Vulnerable
2384	Vine's Rustic	Hoplodrina ambigua	0.048	0.077, 0.019	Increasing
2387	Mottled Rustic	Caradrina morpheus	-0.037	-0.030, -0.044	Vulnerable
2389	Pale Mottled Willow	Caradrina clavipalpis	0.023	0.038, 0.007	Increasing
2394	The Anomalous	Stilbia anomala	-0.075	-0.052, -0.097	Endangered
2410	Marbled White-Spot	Protodeltote pygarga	0.018	0.032, 0.005	Increasing
2422	Green Silver-Lines	Pseudoips prasinana	0.027	0.040, 0.015	Increasing
2425	Nut-Tree Tussock	Colocasia coryli	0.015	0.023, 0.007	Increasing
2434	Burnished Brass	Diachrysia chrysitis	-0.024	-0.018, -0.030	Declining
2439	Gold Spot	Plusia festucae	0.018	0.036, 0.000	Increasing
2441	Silver Y	Autographa gamma	-0.019	-0.014, -0.024	Declining
2442	Beautiful Golden Y	Autographa pulchrina	-0.009	-0.002, -0.015	Declining
2443	Plain Golden Y	Autographa jota	-0.004	0.009, -0.017	Declining
2444	Gold Spangle	Autographa bractea	0.002	0.016, -0.012	Increasing
2450	The Spectacle	Abrostola tripartita	0.012	0.019, 0.005	Increasing
2473	Beautiful Hook-Tip	Laspeyria flexula	-0.029	-0.016, -0.041	Declining
2474	Straw Dot	Rivula sericealis	0.031	0.046, 0.016	Increasing
2475	Waved Black	Parascotia fuliginaria	-0.004	0.009, -0.016	Declining
2477	The Snout	Hypena proboscidalis	-0.006	0.000, -0.012	Declining
2489	The Fan-Foot	Herminia tarsipennalis	-0.013	-0.006, -0.021	Declining
2492	Small Fan-Foot	Herminia grisealis	-0.016	-0.011, -0.021	Declining
-	Lead/July Belle Aggregate ^b	Scotopteryx spp	-0.035	-0.024, -0.045	Declining

Appendix A – continued

a Deep-brown dart Aporophyla lutulenta, and Northern deep-brown dart A. luenerbergensis were not initially recorded as separate species and appear in the table as an aggregate of counts of both species.

b After compiling the data we determined that Lead Belle (Scotopteryx mucronata, 1733) and July Belle (S. luridata, 1734) could not be reliably distinguished on the basis of external appearance, gross morphology, phenology or distribution, so the catches of the two species were combined.

REFERENCES

- Bradley, J.D., 2000. Checklist of Lepidoptera Recorded from the British Isles, second ed. Bradley & Bradley, Fordingbridge.
- Conrad, K.F., Woiwod, I.P., Perry, J.N., 2002. Long-term decline in abundance and distribution of the garden tiger moth (Arctia caja) in Great Britain. Biological Conservation 106, 329–337.
- Conrad, K.F., Woiwod, I.P., Perry, J.N., 2003. East Atlantic teleconnection pattern and the decline of a common arctiid moth. Global Change Biology 9, 125–130.
- Conrad, K.F., Woiwod, I.P., Parsons, M., Fox, R., Warren, M.S., 2004. Long-term population trends in widespread British moths. Journal of Insect Conservation 8, 119–136.
- Cowley, M.J.R., Thomas, C.D., Thomas, J.A., Warren, M.S., 1999. Flight areas of British butterflies: assessing species status and decline. Proceedings of the Royal Society of London Series B-Biological Sciences 266, 1587–1592.
- Donald, P.F., Green, R.E., Heath, M.M., 2001. Agricultural intensification and collapse of Europe's farmland bird populations. Proceedings of the Royal Society of London Series B-Biological Sciences 268, 25–29.

- Dunn, E.H., 2002. Using decline in bird populations to identify needs for conservation action. Conservation Biology 16, 1632–1637.
- Eaton, M.A., Gregory, R.D., Noble, D.G., Robinson, J.A., Hughes, J., Procter, D., Brown, A.F., Gibbons, D.W., 2005. Regional IUCN red listing: the process as applied to birds in the United Kingdom. Conservation Biology 19, 1557–1570.
- Elvidge, C.D., Imhoff, M.L., Baugh, K.E., Hobson, V.R., Nelson, I., Safran, J., Dietz, J.B., Tuttle, B.T., 2001. Night-time lights of the world: 1994–1995. Isprs Journal of Photogrammetry and Remote Sensing 56, 81–99.
- Frank, K.D., 1988. Impact of outdoor lighting on moths: an assessment. Journal of the Lepidopterists Society 42, 63–93.
- Gardenfors, U., Hilton-Taylor, C., Mace, G.M., Rodriguez, J.P., 2001. The application of IUCN red list criteria at regional levels. Conservation Biology 15, 1206–1212.
- Hambler, C., Speight, M.R., 2004. Extinction rates and butterflies. Science 305, 1563.
- IUCN World Conservation Union. 2001. IUCN Red List categories and criteria: Version 3.1. IUCN Species Survival Commission, Gland, Switzerland and Cambridge, UK.
- Lawton, J.H., May, R.M., 1995. Extinction Rates. Oxford University Press, oxford.
- Leon-Cortes, J.L., Cowley, M.J.R., Thomas, C.D., 1999. Detecting decline in a formerly widespread species: how common is the common blue butterfly Polyommatus icarus? Ecography 22, 643–650.
- Longcore, T., Rich, C., 2004. Ecological light pollution. Frontiers in Ecology and the Environment 2, 191–198.
- Mace, G.M., Lande, R., 1991. Assessing extinction threats: toward re-evaluation of IUCN threatened species categories. Conservation Biology 5, 148–157.
- McKinney, M.L., 1999. High rates of extinction and threat in poorly studied taxa. Conservation Biology 13, 1273–1281.
- New, T.R., 2004. Moths (Insecta: Lepidoptera) and conservation: background and perspective. Journal of Insect Conservation 8, 79–94.
- Ormerod, S.J., Watkinson, A.R., 2000. Editor's introduction: birds and agriculture. Journal of Applied Ecology 37, 699.
- Pannekoek, J., Van Strien, A.J. 2001. TRIM 3 Manual (TRends & Indices for Monitoring data) Statistics Netherlands, Voorburg
- Pollard, E., Yates, T., 1993. Monitoring Butterflies for Ecology and Conservation, first ed. Chapman and Hall, London.
- Quinn, R.M., Gaston, K.J., Blackburn, T.M., Eversham, B.C., 1997. Abundance-range size relationships of macrolepidoptera in Britain: the effects of taxonomy and life history variables. Ecological Entomology 22, 453–461.

- Shirt, D.B., 1987British Red Data Books, vol. 2. Insects Nature Conservancy Council, Peterborough.
- Taylor, L.R., French, R.A., 1974. Effects of light-trap design and illumination on samples of moths in an English woodland. Bulletin of Entomological Research 63, 583–594.
- Thomas, L., 1996. Monitoring long-term population change: why are there so many analysis methods? Ecology 77, 49–58.
- Thomas, J.A., 2005. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philosophical Transactions of the Royal Society B-Biological Sciences 360, 339–357.
- Thomas, C.D., Abery, J.C.G., 1995. Estimating rates of butterfly decline from distribution maps the effect of scale. Biological Conservation 73, 59–65.
- Thomas, J.A., Clarke, R.T., 2004. Extinction rates and butterflies. Science 305, 1563–1564.
- Thomas, J.A., Morris, M.G., 1994. Patterns, mechanisms and rates of extinction among invertebrates in the United Kingdom. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 344, 47–54.
- Thomas, J.A., Telfer, M.G., Roy, D.B., Preston, C.D., Greenwood, J.J.D., Asher, J., Fox, R., Clarke, R.T., Lawton, J.H., 2004. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303, 1879–1881.
- Van Strien, A.J., Pannekoek, J., Gibbons, D.W., 2001. Indexing European bird population trends using results of national monitoring schemes: a trial of a new method. Bird Study 48, 200–213.
- Warren, M.S., Hill, J.K., Thomas, J.A., Asher, J., Fox, R., Huntley, B., Roy, D.B., Telfer, M.G., Jeffcoate, S., Harding, P., Jeffcoate, G., Willis, S.G., Greatorex-Davies, J.N., Moss, D., Thomas, C.D., 2001. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69.
- Wickramasinghe, L.P., Harris, S., Jones, G., Vaughan Jennings, N., 2004. Abundance and species richness of nocturnal insects on organic and conventional farms: effects of agricultural intensification on bat foraging. Conservation Biology 18, 1283–1292.
- Williams, C.B., 1948. The Rothamsted light trap. Proceedings of the Royal Entomological Society of London A 23, 80–85.
- Williams, C.B., 1952. Some notes on killing insects for collections and for scientific research. The Entomologist 85, 271–279.
- Wilson, E.O., 1992. The Diversity of Life. Penguin Press, London.
 Woiwod, I.P., Harrington, R., 1994. Flying in the face of change: The Rothamsted Insect Survey. In: Leigh, R., Johnston, A. (Eds.), Long-Term Experiments in Agricultural and Ecological
- Sciences. CAB International, Wallingford, pp. 321–342.